Functions with prescribed best linear approximations

نویسندگان

  • Patrick L. Combettes
  • Noli N. Reyes
چکیده

A common problem in applied mathematics is that of finding a function in a Hilbert space with prescribed best approximations from a finite number of closed vector subspaces. In the present paper we study the question of the existence of solutions to such problems. A finite family of subspaces is said to satisfy the Inverse Best Approximation Property (IBAP) if there exists a point that admits any selection of points from these subspaces as best approximations. We provide various characterizations of the IBAP in terms of the geometry of the subspaces. Connections between the IBAP and the linear convergence rate of the periodic projection algorithm for solving the underlying affine feasibility problem are also established. The results are applied to investigate problems in harmonic analysis, integral equations, signal theory, and wavelet frames.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

Approximations of pseudo-Boolean functions; applications to game theory

This paper studies the approximation of pseudo-Boolean functions by linear functions and more generally by functions of (at most) a specified degree. Here a pseudo-Boolean function means a real valued function defined on {0, 1} n, and its degree is that of the unique multilinear polynomial that expresses it; linear functions are those of degree at most one. The approximation consists in choosin...

متن کامل

Non-linear Approximation and Interpolation Spaces

We study n-term wavelet-type approximations in Besov and Triebel–Lizorkin spaces. In particular, we characterize spaces of functions which have prescribed degree of n-term approximation in terms of interpolation spaces. These results are applied to identify interpolation spaces between Triebel–Lizorkin and Besov spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2010